
DOI: 10.1007/s10910-005-9040-2
Journal of Mathematical Chemistry, Vol. 39, No. 2, February 2006 (© 2005)

Competition in the bioreactor with general quadratic
yields when one competitor produces a toxin
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Microorganisms produce toxins against its competitors sometimes, and variable
yields are useful to explain the observed oscillatory behavior in the reactor. In this
paper, a model with general quadric yields of competition in the bioreactor of two com-
petitors for a single nutrient where one of the competitors can produce toxin against
its opponent, is proposed. We analyze the asymptotic behavior of the model in terms
of the relevant parameters. The conditions of the three dimensional Hopf bifurcation,
and the existence of limit cycles in the nutrient-organism phase plane are obtained.
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1. Introduction

The bioreactor is often used in laboratory to manufacture products with
genetically altered organisms. In most of the models of bioreactors it is assumed
that no toxins are produced by one organism to inhibit the other. However, in
nature it is known that microorganisms do produce inhibitors against their rivals.
So it is important to consider the toxin issue in these models, because most likely
in a bioreactor inhibitors are used to suppress the competitors of the organism
manufacturing a product.

Chao and Levin provided basic experiments on anti-bacterial toxins [1].
Hsu and Waltman studied the competition in the bioreactor when one competi-
tor produces a toxin, which destroys the other [2,3]. Lenski and Hattingh [4] pro-
posed a model of the bioreactor with an external inhibitor and used numerical
experiments to illustrate the behavior of solutions. Late, the model was analyzed
mathematically by Hsu and Luo [5] and Hsu and Waltman [2]. Levin [6] also
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constructed a bioreactor model with some numerical evidence of the presence of
bi-stable attractors due to toxins (see figure 1 of [6]).

Some mathematical analysis of the chemostat with an internally produced
selective medium was given by Hsu and Waltman [2]. The authors also proposed
a model in consideration of redirecting a portion of the consumed nutrient to the
production of the inhibitor, the global asymptotic behavior of the model. Equa-
tions of the model take the form [7].

S ′ = (S0 − S)D − x

γ1

m1S

a1 + S
− y

γ2

m2S

a2 + S

x ′ = x

(
m1S

a1 + S
−D − γP

)

(1)
y ′ = y

(
(1 − k)

m2S

a2 + S
−D

)

P ′ = ky
m2S

a2 + S
−DP,

where S(t) denote the concentration of nutrient in the vessel, x(t), the concen-
tration of the toxin sensitive microorganism, y(t), the toxin producing organism,
and p(t), the concentration of toxin present. S0 is the input concentration of
nutrient, D is the washout rate, mi , the maximal growth rates, ai , the Michaelis–
Menten constants and γi, i = 1, 2, the yield constants. This is usually called the
Monod Model or the model with Michaelis–Menten dynamics. The constant k
represents the fraction of potential growth devoted to producing the toxin. k = 0
produces a system asymptotic to the standard chemostat and k = 1 represents all
effects devoted to producing the toxin and results in no growth and thus extinc-
tion. Usually, k is assumed a constant between 0 and 1.

The local and global stability of the equilibrium points of a limiting sys-
tem of (1) was studied by Hus and Waltman. However, in their simulations no
limit cycles have been found. They indicated that “Eliminating this possibility
remain an interesting open question” (p. 479, [7]). Since limit cycles correspond
to the nonlinear oscillatory phenomena in the reactor, which has been observed
in the experiments [9]. Most of the models in bioreactors assume the yields to be
constants, but the experimental data indicate that constant yields fail to explain
the oscillatory behavior in the chemostat (see [9,10]). Efforts have been mode in
this direction for the standard chemastat models (Croode [11,12], Huang [8], Zhu
and Huang [13]). But in the case when one competitor produces a toxin there is
not any model with variable yields reported in the literature. Furthermore, it is
always of interest in both theory and applications to prove the existence of peri-
odic solutions of the n-dimensional differential system. The situation of n � 3 is
much complicated than the one of n = 2 because the powerful tools in the plane
system like Poincare-Bendixson theorem cannot be applied directly in the space.
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The goal of this paper is to propose a bioreactor model with a toxin-
producing competitor with variable yields: γ1 = A1 +B1S+C1S

2, γ2 = A2 +B2S+
C2S

2. We shall study the global asymptotic behavior of the model in terms of sys-
tem parameters, the operating parameters of the bioreactor and the parameters
of the organisms. We shall also show that the three dimensional system undergoes
a Hopf bifurcation which implies the existence of limit cycles in the three dimen-
sional space. This study is useful in analyzing the nonlinear oscillatory behaviors
in the competition when one organism produces toxin. We propose our model in
Section 2 and leave the main theorems and the proofs in Section 3.

2. The model

Perform the usual scaling for the chemostat, and let

S = S

S0
, x = x

S0
, y = y

S0
, P = P

S0
. τ = Dt,

mi = mi

D
, ai = ai

S0
, γ = γ S0

D
, ′ = d

dτ
.

Then drop the bars and replace τ with t , BiS0 with Bi, CiS
2
0 with Ci, i = 1, 2,

system (1) becomes

S ′ = 1 − S − x

A1 + B1S + C1S2

m1S

a1 + S
− y

A2 + B2S + C2S2

m2S

a2 + S

x ′ = x

(
m1S

a1 + S
− 1 − γP

)

y ′ = y

(
(1 − k)

m2S

a2 + S
− 1

)
(2)

P ′ = ky
m2S

a2 + S
− P.

The parameters, which are all positive, have been scaled by the operating envi-
ronment of the bioreactor, determined by S0 and D. The variable is non-
dimensional and the parameters are scaled relative to this environment. The
interaction between the toxin and sensitive organism is of the form −γPx, γ
is the toxin coefficient. A fraction, k, of the nutrient consumption has been allo-
cated to the production of the growth rate corresponding reduced [7].

It is noted that the form of the equations are such that the positive initial
conditions at t = 0 result in positive solutions for t > 0. Actually, the positive
octant

� = {
(S, x, y)

∣∣S > 0, x > 0, y > 0
}
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is positively invariant under (2). This is because that on the part of �, where
S = 0, the vector field is directed strictly insider � since S ′ = 1, and the faces
x = 0 and y = 0 are solutions of (2). It is also noted that, for any solutions in
�, S ′ � 1 − S, and thus

lim
t→∞ supS(t) � lim

t→∞ sup(1 + (S(0)− 1)e−t ) = 1.

Since each component is non-negative, system (2) is dissipative and thus has
a compact, global attractor.

Let us introduce a new variable z = P−ky/(1−k) to simplify the equations
of (2), and obtain

z′ = −z
S ′ = 1 − S − x

A1 + B1S + C1S2

m1S

a1 + S
− y

A2 + B2S + C2S2

m2S

a2 + S

(3)
x ′ = x

(
m1S

a1 + S
− 1 − γ z− γ ky

1 − k

)

y ′ = y

(
(1 − k)m2S

a2 + S
− 1

)
.

By the first equation of (3), z(t) → 0 as t → +∞, so (3) may be considered as
an asymptotically autonomous system with the limiting system

S ′ = 1 − S − x

A1 + B1S + C1S2

m1S

a1 + S
− y

A2 + B2S + C2S2

m2S

a2 + S

x ′ = x

(
m1S

a1 + S
− 1 − y

kγ

1 − k

)
(4)

y ′ = y

(
(1 − k)

m2S

a2 + S
− 1

)
.

Similarly, the form of the equations of (4) guarantees that the positive
octant � is positively invariant and so are the faces x = 0 and y = 0. It is noted
that system (4) is dissipative which is inherited from (3), and consequence, the
global attractor of (3) lies in the set z = 0 where (4) is satisfied.

3. Main theorems and proofs

Denote

λ1 = a1

m1 − 1
, λ2 = a2

(1 − k)m2 − 1
, λ̂ = ϕ−1(0), (5)

where

ϕ(λ) = m1λ

a1 + λ
− 1 − kγ (1 − λ)(A2 + B2λ2 + C2λ

2
2). (6)
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ϕ(λ) is a monotonic increasing function since ϕ′(λ)> 0, thus the inverse function
ϕ−1 is well defined and the only solution λ̂ exists. Moreover, since ϕ(λ1)< 0, and
ϕ(1)> 0, it follows that λ1< λ̂< 1.

Note that λ2< λ̂ implies ϕ(λ2)< 0.
System (4) has four possible equilibrium points:

E0 (1, 0, 0) , E1
(
λ1, (1 − λ1)(A1 + B1λ1 + C1λ

2
1), 0

)
if λ1< 1,

E2
(
λ2, 0, (1 − λ2) (1 − k)

(
A2 + B2λ2 + C2λ

2
2

))
if λ2< 1, and

E3 (λ2, x
∗, y∗) if λ1<λ2< λ̂,

where

x∗ =
(
A1 + Bλ2 + C1λ

2
2

)
(a1 + λ2)

m1λ2

(
1−λ2− 1

kγ
(
A2 + B2λ2 + C2λ

2
2

)
(
m1λ2

a2 + λ2
−1
))

y∗ = 1 − k

kγ

(
m1λ2

a1 + λ2
− 1

)
, (both are positive). (7)

Regarding the stability, denote

R1 =
(1 − λ1)

((
1 + C1λ1

B1+C1λ1

)
(a1 + λ1)

2 − λ1m1a1

)
− λ1 (a1 + λ1)

2

(a1 + λ1)
2 + (1 − λ1)m1a1

, (8)

R2 =
(1 − λ2) (1 − k)

((
1 + C2λ2

B2+C2λ2

)
(a2 + λ2)

2 − λ2m2a2

)
− λ2 (a2 + λ2)

2

(a2 + λ2)
2 + (1 − λ2) (1 − k)m2a2

. (9)

By a standard argument one can prove:

Theorem 1. (i). E0 always exists. It is locally asymptotically stable if λi > 1, i =
1, 2, and unstable if either inequality is reversed. (ii). E1 always exists with a two
dimensional stable manifold (the plane y = 0); and it is locally asymptotically
stable if λ1<λ2 and A1/(B1 + C1λ1)>R1, and unstable if either inequality is
reversed. (iii). E2 exists if and only if λ2< 1. If it exists, it has a two dimensional
stable manifold (the plane x = 0) and it is locally asymptotically stable if λ2< λ̂

and A2/(B2 + C2λ2)>R2, and unstable if either inequality is reversed. (iv) E3

exists if and only if λ1<λ2< λ̂, and if it exists it is always unstable with a two
dimensional stable manifold.

Proof. Most of the proofs are similar to the one of Theorem 1 in [13]. Here we
just add some necessary points. In the proof of (iii), the characteristic equation
of the variational matrix J (E2) of (4) is

(r − d2)
(
r2 + b2r + c2

) = 0, (10)
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where

d2 = m1λ2

a1 + λ2
− 1 − (1 − λ2)

(
A2 + B2λ2 + C2λ

2
2

)
kγ = ϕ(λ2).

Thus, d2< 0 implies λ2< λ̂. In addition, if b2> 0, all the eigenvalues are either
negative or with negative real parts. Thus, E2 is stable if λ2< λ̂ and A2/(B2 +
C2λ2)>R2. E2 is unstable if λ2> λ̂ or if A2/(B2 + C2λ2)<R2.

To determine the stability of E3, we consider the Jacobian matrix J (E3) of
(4). Since

det(J (E3)) = 1
A1 + B1λ2 + C1λ2

m1λ2

a1 + λ2

x∗kγ
1 − k

y∗(1 − k)
m2a2

(a2 + λ2)2
> 0,

there exists at least one positive eigenvalue of J (E3), which implies that E3 is
always unstable. E3 is either a repeller or unstable with a two dimensional sta-
ble manifold. Since the trace of J (E3) is negative, the first alternative cannot be
true. Thus, E3 is unstable with a two dimensional stable manifold, which implies
the nonexistence of limit cycles around E3.

For the global statement of (i), we can use the comparison argument. Let
(S(t), x(t), y(t)) be a solution of (4). Consider

(
S + x

A1 + B1λ1 + C1λ
2
1

+ y(
A2 + B2λ2 + C2λ

2
2

)
(1 − k)

)′

= 1 −
(
S + x

A1 + B1λ1 + C1λ
2
1

+ y(
A2 + B2λ2 + C2λ

2
2

)
(1 − k)

)

− xykγ(
A1 + B1λ1 + C1λ

2
1

)
(1 − k)

−x m1S

a1 + S

(
1

A1 + B1S + C1S2
− 1

A1 + B1λ1 + C1λ
2
1

)

−y m2S

a2 + S

(
1

A2 + B2S + C2S2
− 1

A2 + B2λ2 + C2λ
2
2

)

� 1 −
(
S + x

A1 + B1λ1 + C1λ
2
1

+ y(
A2 + B2λ2 + C2λ

2
2

)
(1 − k)

)
. (11)

This is because for λi > 1>S, i = 1, 2,

1
Ai + BiS + CiS2

>
1

Ai + Biλi + Ciλ
2
i

.
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Let ψ(t) be the solution of

ψ ′(t) = −ψ(t)
ψ(t0) = 1 − S(t0)− x(t0)

A1 + B1λ1 + C1λ
2
1

− y(t0)(
A2 + B2λ2 + C2λ

2
2

)
(1 − k)

. (12)

For sufficiently large t ,

0< 1 − S(t)− x(t)

A1 + B1λ1 + C1λ
2
1

− y(t)(
A2 + B2λ2 + C2λ

2
2

)
(1 − k)

� ψ(t).

Since ψ(t) → 0 as t → ∞, then

1 − S(t)− x(t)

A1 + B1λ1 + C1λ
2
1

− y(t)(
A2 + B2λ2 + C2λ

2
2

)
(1 − k)

→ 0 as t → ∞.

Note that if λ1> 1, so S <λ1 and by the second equation of (4),

x ′<x
(
m1S

a1 + S
− 1

)
<x

(
m1

a1 + 1
− 1

)
< 0.

Consider

x̂ ′(t) = x̂(t)
(

m1
a1+1 − 1

)

x̂(t0) = x(t0).
(13)

For t sufficiently large, 0<x (t) < x̂ (t). Since x̂ (t) → ∞ as t → ∞, then so is
x (t).

Similarly, y (t) → 0 as t → ∞, and thus S (t) → 1 as t → ∞. The proof
of Theorem 1 is completed. �

By Theorem 1, one can see the local stability implies the global stability for
the equilibrium E0. It is also true for E1 and E2.

Theorem 2. (i) If λ1<λ2 and A1/(B1 +C1λ1)>R1, then E1 is globally asymptot-
ically stable. (ii) If λ2< λ̂ and A2/(B2 + C2λ2)>R2, then E2 is globally asymp-
totically stable.

Proof. We look for a positive invariant set in the positive octant � and its
boundary ∂�. Denote

�+ = {
(S, x, y)|0 � S � L− x − y, 0 � x � (1 − λ1)(A1 + B1λ1 + C1λ

2
1)

+ε0, 0 � y � (1 − λ2)(1 − k)(A2 + B2λ2 + C2λ
2
2)+ ε0,

where

ε0 = const. L � 1
}
.
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If we can prove that any trajectory initiating at the point in � ∪ ∂� enters into
�+ when t is sufficiently large, then the global stability is established from the
local stability. The proof is similar to the one of Theorem 5 in [13]. �

From Theorem 2, it follows that

Theorem 3. (i) If λi > 1, i= 1, 2, then lim
t→∞ S(t)= 1, lim

t→∞ x(t)= lim
t→∞ y(t) = 0;

(ii) If λ1< 1, λ1<λ2 and A1/(B1 + C1λ1)>R1, then

lim
t→∞ S(t) = λ1, lim

t→∞ x(t) = (1 − λ1)(A1 + B1λ1 + C1λ
2
1),

lim
t→∞ y(t) = 0;

(iii) If λ2< 1, λ1>λ2 (or λ1<λ2< λ̂) and A2/(B2 + C2λ2)>R2, then

lim
t→∞ S(t) = λ2, lim

t→∞ x(t) = 0,

lim
t→∞ y(t) = (1 − λ2)(1 − k)(A2 + B2λ2 + C2λ

2
2).

From the standpoint of the operation of the bioreactor, if E0 or E1 is
globally asymptotically stable, in which limt→∞ y(t) = 0, the reactor is not func-
tioning as desired. Conversely, if E2 is asymptotically stable, y survives and it is
manufacturing the desired product.

Regarding the bifurcation for the three dimensional system (4), we shall use
the LaSalle corollary to the Liapunov stability theorem (see [14]) to show the
stability of E2 at A2/(B2 + C2λ2) = R2 first. Since the Liapunov function is not
necessarily continuous on the closure of the region, we use an extension that was
used by Wolkowicz and Lu [14]. The extension states that V is a Liapunov func-
tion for a system dX/dt = f (X) in a region G ⊂ G if

(i) V is continuous on G;

(ii) V is not continuous at a point X ∈ G implies that lim
X→X,X∈G

V (X) = ∞;

(iii) V ′ = ∇V · f � 0 on G.

Theorem 4. Assume A2 � 1. If λ2<λ1, the equilibrium E2 is globally asymptot-
ically stable.

Proof. Let

V (S, x, y) =
∫ S

λ1

η − λ2

η
dη + c1

∫ y

y∗

η − y∗
η

dη + c2x + c3y, (14)

where c1, c2, c3 are determined late, and y∗ = (1 − k)(1 − λ2)(A2 + B2λ2 +C2λ
2
2).

Then
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V ′ = S − λ2

S

(
1 − S − x

A1 + B1S + C1S2

m1S

a1 + S
− y

A2 + B2S + C2S2

m2S

a2 + S

)

+c1
y − y∗

y
y

(
(1 − k)

m2S

a2 + S
− 1

)
+ c2x

(
m1S

a1 + S
− 1 − y

kγ

1 − k

)

+c3y

(
(1 − k)

m2S

a2 + S
− 1

)

= S − λ2

S
(1 − S)− c1y

∗
(
(1 − k)

m2S

a2 + S
− 1

)

+
(

−S − λ2

S

y

A2 + B2S + C2S2

m2S

a2 + S
+ y(c1 + c3)

(
(1 − k)

m2S

a2 + S
− 1

))

−c2
kγ xy

1 − k
+ c2x

(
m1λ2

a1 + λ2
− 1

)
+ x

(
c2

(
m1S

a1 + S
− m1λ2

a1 + λ2

)

−S − λ2

S

1
A1 + B1S + C1S2

m1S

a1 + S

)

≡ V1 + V2 + V3 + V4 + V5.

It easy to see that

(1 − k)
m2S

a2 + S
− 1 = (1 − k)m2 − 1

a2 + S
(S − λ2), 1 − k = a2 + λ2

m2λ2
. (15)

The sign of each part of V ′ can be determined as follows:
First choose c1 =m2/((1 − k)m2 − 1)(A2 + B2λ2 + C2λ

2
2), and it follows that

V1 = S − λ2

S
(1 − S)− c1y

∗ ((1 − k)m2 − 1)(S − λ2)

a2 + S

= (S − λ2)

(
1 − S

S
− m2

(1 − k)m2 − 1
(1 − k)(1 − λ2)(A2 + B2λ2 + C2λ

2
2)

×(1 − k)m2 − 1
a2 + S

)
= (S − λ2)

(
1 − S

S
−m2(1 − k)(1 − λ2)

1
a2 + S

)

� (S − λ2)

(
1 − S

S
−m2

a2 + λ2

m2λ2
(1 − λ2)

1
a2 + S

)

= −(S − λ2)
2 a2 + Sλ2

λ2S(a2 + S)
� 0.
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Also,

V2 = −S − λ2

S

y

A2 + B2S + C2S2

m2S

a2 + S
+ y(c3 + c1)

(1 − k)m2 − 1
a2 + S

(S − λ2)

= S − λ2

a2 + S

y

A2 + B2S + C2S2

(
(c1 + c3)((1 − k)m2 − 1)(A2 + B2S + C2S

2)−m2
)
.

Suppose S � λ2, choose

c3 = m2

(1 − k)m2 − 1

(
1
A2

− 1

A2 + B2λ2 + C2λ
2
2

)
,

then(
m2

((1 − k)m2 − 1)(A2 + B2λ2 + C2λ
2
2)

+ c3

)
((1−k)m2−1)(A2+B2S+C2λ

2
2) � m2.

Therefore, V2 � 0.
Suppose S >λ2. Choose

c3 = m2

(1 − k)m2 − 1

(
1

A2 + B2 + C2
− 1

A2 + B2λ2 + C2λ
2
2

)
,

hence (c1 + c3)((1 − k)m2 − 1)(A2 + B2S + C2S
2)<m2 that is V2< 0.

Regarding V3, V4 and V5, one has

V3 = −c2
kγ xy

1 − k
� 0, V4 = c2x

(
m1λ2

a1 + λ2
− 1

)
� 0 (since c2 � 0, λ2<λ1) and

V5 = x

(
c2

( m1S

a1 + S
− m1λ2

a1 + λ2

)
− S − λ2

S

1
A1 + B1S + C1S2

m1S

a1 + S

)

= xm1(S − λ2)

a1 + S

(
c2a1

a1 + λ2
− 1
A1 + B1S + C1S2

)
.

If S � λ2, choose c2 = (a1 + λ2)/a1, then

c2a1

a1 + λ2
� 1
A1 + B1S + C1S2

and V5 � 0.

If S >λ2, choose c2 = (a1 + λ2)/a1(A1 + B1 + C1), then

c2a1

a1 + λ2
� 1
A1 + B1S + C1S2

, and thus V5 � 0.

Therefore,

V ′ = V1 + V2 + V3 + V4 + V5 � 0, (16)
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and by the LaSally corollary, all trajectories tend to the largest invariant set in

 = {(S, x, y)|V ′ = 0}. This requires S ≡ λ2 and x ≡ 0.

To make {S|S = λ2} invariant, under the condition x = 0, requires

S ′ = 1 − λ2 − y
1

(1 − k)(A2 + B2λ2 + C2λ
2
2)

= 0, (17)

which implies y = (1−k)(1−λ2)(A2 +B2λ2 +C2λ
2
2). Therefore {E2} is the unique

invariant set in 
. We thus complete the proof of Theorem 4. �
We are now in a position to prove the three dimensional Hopf bifurcation

theorem for system (4). We first introduce the following lemma [15].

Lemma 1. Let W be an open set in R3, (0, 0, 0) ∈ W . Let f : W × (−µ0, µ0) →
R3 be an analytic function on W × (−µ0, µ0), where µ0 is a small positive num-
ber. Denote the Jacobian of f at (X,µ) = ((0, 0, 0), 0) as J (f (0, 0)) and assume
that

(i) system

dX
dt

= f (X,µ) (18)

has (0, 0, 0) as its equilibrium point for any µ;

(ii) the eigenvalues of J (f (0, 0)) are ±iβ(µ)|µ=0 = ±iβ(0), δ (µ)|µ=0 = δ(0)
with

β(0)> 0, δ(0)< 0.

Then, if (0, 0, 0) is asymptotically stable at µ = 0, there exists a sufficiently small
µ, µ> 0 such that system (18)µ has an asymptotically stable closed orbit sur-
rounding (0, 0, 0).

The proof of the lemma 1 is based on the Liapunov second method, which
can be found in [15].

Theorem 5. If λ2<λ1, system (4) undergoes a three dimensional Hopf bifurca-
tion at R2 = A2/(B2+C2λ2), and the periodic solution created by the Hopf bifur-
cation is asymptotically stable for 0<R2 − A2/(B2 + C2λ2) � 1.

Proof. Make the change of variables:

S = S − λ2, x = x, y = y − (1 − λ2)(1 − k)(A2 + B2λ2 + C2λ
2
2),

and denote the Jacobian of system (4) in variables S, x, y as J (S, x, y).
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Choose µ = R2−A2/(B2+C2λ2), R2 as in (9), as the Hopf bifurcation parameter,
and consider system (4) in variables S, x, y as dX

dt = f (X,µ) in (18)µ. Then

J (f (0, 0)) = J (S, x, y)

∣∣∣∣∣∣∣∣ (S, x, y) = (0, 0, 0)
µ = 0

= J (S, x, y)

∣∣∣∣∣∣∣ (S, x, y)
µ = 0

= (λ2, 0, (1 − λ2)(1 − k)(A2 + B2λ2 + C2λ
2
2)),

whose characteristic equation is

(r − d2)

(
r2 + (1 − λ2)(1 − k)

m2a2

(a2 + λ2)2

)
= 0. (19)

The eigenvalues of (19) are ±iβ(0) and δ(0), where

β(0) = 1
a2 + λ2

√
(1 − λ2)(1 − k)m2a2> 0,

δ(0) = ϕ(λ2)< 0, (since λ2<λ1< λ̂),

(20)

and the hypotheses of the lemma 1 are satisfied. From theorem 4, it follows that:
(1) The equilibrium of system (4): (0, 0, 0) in the S, x, y coordinate system, or
(λ2, 0, (1−λ2)(1−k)(A2 +B2λ2 +C2λ

2
2)) in S, x, y coordinates is globally asymp-

totically stable at µ � 0; (2) (0, 0, 0) in S, x, y, or (λ2, 0, (1 − λ2)(1 − k)(A2 +
B2λ2 + C2λ

2
2)) in S, x, y, is unstable if µ> 0 (Theorem 2 (iii)).

Therefore, system (18)µ, (or (4)), undergoes a Hopf bifurcation at µ = 0,
(or, R2 = A2/(B2 +C2λ2)). Lemma 1 implies that for a sufficient small µ,µ> 0,
system (18)µ has an asymptotically stable closed orbit surrounding (0, 0, 0), that
is, for 0<R2 − A2/(B2 + C2λ2)< < 1, system (4) has an asymptotically stable
closed orbit surrounding E2(λ2, 0, (1 − λ2)(1 − k)(A2 + B2λ2 + C2λ

2
2)). Theorem

5 is obtained. �
Regarding the limit cycles in the corresponding stable manifold, following

the argument as in [8,13] will result in the next two theorems. It is easy to see
that on x = 0 system (4) is reduced to

S ′ = 1 − S − y
1

A2 + B2S + C2S2

m2S

a2 + S

y ′ = y

(
(1 − k)m2S

a2 + S
− 1

)
. (21)

The following theorem holds.

Theorem 6. Assume 0<λ2< 1. System (21) has two equilibrium points:
N1 : (1, 0), and N2 : (λ2, (1 − λ2)(1 − k)(A2 + B2λ2 + C2λ

2
2)). N1 is a saddle,

and if A2/(B2 +C2λ2)>R2, then N2 is stable; if A2/(B2 +C2λ2)<R2, then N2 is



X. Huang et al. / Competition in the bioreactor 293

unstable and there exists at least one limit cycle in the stable manifold x = 0
surrounding N2.

Similarly, on the two dimensional stable manifold y= 0, system (4) is
reduced to

S ′ = 1 − S − x

A1 + B1S + C1S2

m1S

a1 + S

(22)
x ′ = x

(
m1S

a1 + S
− 1

)
.

We have

Theorem 7. If 0<λ1< 1, system (22) has two equilibrium points: M1 : (1, 0), and
M2 : (λ1, (1−λ1)(A1 +B1λ1 +C1λ

2
1)). M1 is a saddle, and M2 is stable if A1/(B1 +

C1λ1) > R1, and unstable if A1/(B1 +C1λ1)<R1. In the case when M2 is unsta-
ble, there is at least one limit cycle of (22) surrounding M2 on the face y = 0.

4. Conclusion

Since the experiments of Chao and Levin [1], the study of the competition
in the bioreactor where toxins are produced by one organism to inhibit the other
has been interesting to many authors [1–3,5,7,9,13]. However, all these models
are assumed that the yields are constants, but the models with constant yields are
failed to explain the observed oscillatory behavior in the reactor [8,9,11–13]. We
thus modified the model with general quadric yields. We have shown the asymp-
totic behavior of the model changes with system parameters, and the outcome
depends on the initial conditions. We also prove that the three dimensional sys-
tem undergoes a Hopf bifurcation which creates the existence of limit cycles in
the space. Moreover, we investigate that the limit cycles also exist in the nutri-
ent-organism phase plane. Note that the Hopf bifurcation discuss in this paper
is for the three dimensional system which is different from the one in [13] which
are only in the two dimensional stable manifold.

We observed that in some case the desirable organism is a better competi-
tor without producing an inhibitor so the select medium may not be important
(Theorem 2, Section 3). Also, if too much consumption is devoted to produc-
ing the inhibitor, λ2 increases to the point that x wins in spite of the inhibi-
tion. Therefore, the inferior competitor can succeed by producing an inhibitor,
but only if the initial conditions are suitable.
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